

Example 10 The mass of an object is measured with 4 repeated measurements. The sample mean is 5.0125 g. From historical data the variance is known as $\sigma^2 = 10^{-4}g^2$. May we believe (based on the data) that the expected value (the true mass of the object if the balance is unbiased) is 5.0000 g? $\bar{x} = 5.0125$, $\sigma^2 = 10^{-4}$, n = 4, $\alpha = 0.05$ 1. Formulate the null and alternative hypothesis $H_0: \mu = \mu_0 = 5.0000$, $H_1: \mu \neq \mu_0 = 5.0000$ 2. Calculate the test statistic $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{5.0125 - 5}{10^{-2}/2} = 2.5$

	Decis	sion
	The H ₀ hypothesis is	
	Accepted Rejected	
H_0 is true	Proper decision	Error of first kind (α)
H_0 is false	Error of second kind (β)	Proper decision
	Power=1-β	

Example 11

A raw materials' $CaSO_4$ concentration should be at least 85.0g/100g. The variance of the $CaSO_4$ content is 4.2 (g/100g)². The average $CaSO_4$ content of five 100g samples is 83.8g. We have to decide at α =0.05 significance level if the CaSO4 content reach the required 85.0g?

1. Formulate the null and alternative hypothesis

$$H_0: \mu \le \mu_0 = 85, \quad H_1: \mu > \mu_0 = 85$$

2. Calculate the test statistic

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{83.8 - 85.0}{\sqrt{4.2} / \sqrt{5}} = -1.31$$

4. Decision

$$z_{0} = -1.31 < 1.65 = z_{\alpha}$$

$$z_{0} \text{ is in the accept interval, thus we accept the null hypothesis.}$$
What is the decision about the raw material?
What if the null and alternative hypothesis is formulated in the opposite way?

$$H'_{0}: \mu \ge \mu_{0} = 85, \quad H'_{1}: \mu < \mu_{0} = 85$$

$$z_{0} = -1.31$$

$$f(z) \qquad f(z_{0} | \mu < \mu_{0}) \quad f(z_{0} | \mu = \mu_{0}) \quad f(z_{0} | \mu > \mu_{0})$$

$$f(z) \qquad f(z) \qquad f(z) \quad f(z_{0} | \mu < \mu_{0}) \quad f($$

"FAIL TO REJECT" CONCEPT
"it is customary to think of the decision to accept <i>H0</i> as a weak conclusion, unless we know that beta is acceptably small. Therefore, rather than saying we "accept H_0 ," we prefer the terminology "fail to reject H_0 ." Failing to reject H_0 implies that we have not found sufficient evidence to reject H_0 , that is, to make a strong statement. Failing to reject H_0 does not necessarily mean that there is a high probability that H_0 is true. It may simply mean that more data are required to reach a strong conclusion. This can have important implications for the formulation of hypotheses.
There is a useful analog between hypothesis testing and a jury trial. In a trial the defendant is assumed innocent (this is like assuming the null hypothesis to be true). If strong evidence is found to the contrary, the defendant is declared to be guilty (we reject the null hypothesis). If there is insufficient evidence the defendant is declared to be not guilty. This is not the same as proving the defendant innocent and so, like failing to reject the null hypothesis, it is a weak conclusion."
D.C. Montgomery and G.C. Runger: Applied Statistics and Probability for Engineers, 5th edition, 2011, Wiley 14

	<i>t</i> -TEST			
$H \cdot \mu = \mu$	$H : \mu \neq \mu$			
$\Pi_0 \cdot \mu \mu_0$	$\mathbf{H}_1:\boldsymbol{\mu} \neq \boldsymbol{\mu}_0$			
$H_0: \mu \leq \mu_0$	$H_1: \mu > \mu_0$			
$\mathrm{H}_0'':\mu\geq\mu_0$	$H_1'': \mu < \mu_0$			
$t = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	$\longrightarrow t_0 =$	$rac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$	test statistic	
If H_0 is true, $t_0 = t$				
If t_0 takes its value in	the $\left(-t_{a/2},t_{a/2}\right)$	$H_0: \mu =$	$=\mu_0$	
	$(-\infty, t_{\alpha})$	$H_0': \mu \leq$	$\leq \mu_0$	
	$(-t_{\alpha},\infty)$	$H_0'': \mu \ge$	$\pm \mu_0$	
	range, H ₀ is	accepted.		15

	CHI-SQUARE-TE	EST	
	2 2		
$\mathrm{H}_{0}:\sigma^{2}=\sigma_{0}^{2}$	$\mathrm{H}_{1}:\sigma^{2}\neq\sigma_{0}^{2}$		
$\mathrm{H}_0': \sigma^2 \leq \sigma_0^2$	$\mathrm{H}_{1}^{\prime}:\sigma^{2}>\sigma_{0}^{2}$		
$\mathbf{H}_0'': \boldsymbol{\sigma}^2 \geq \boldsymbol{\sigma}_0^2$	$\mathbf{H}_{1}'':\boldsymbol{\sigma}^{2} < \boldsymbol{\sigma}_{0}^{2}$		
$\chi^2 = \frac{s^2 \nu}{\sigma^2} -$	$\longrightarrow \chi_0^2 = \frac{s^2 v}{\sigma^2}$	test statistic	
If H ₀ is true, $\chi_0^2 = \chi^2$			
If t_0 takes its value in th	e $\left(\chi^2_{1-a/2},\chi^2_{a/2}\right)$ H	$\mathbf{H}_0: \boldsymbol{\sigma}^2 = \boldsymbol{\sigma}_0^2$	
	$\left(0,\chi_{\alpha}^{2}\right)$ H	$\mathbf{I}_0': \boldsymbol{\sigma}^2 \leq \boldsymbol{\sigma}_0^2$	
	$\left(\chi^2_{1-lpha},\infty\right)$ H	$\mathbf{H}_0'': \sigma^2 \ge \sigma_0^2$	
	range, H_0 is acc	epted.	16

	<i>F</i> -test		
$H_0: \sigma_1^2 = \sigma_2^2$	$H_1: \sigma_1^2 \neq \sigma_2^2$		
$\mathbf{H}_{0}': \boldsymbol{\sigma}_{1}^{2} \leq \boldsymbol{\sigma}_{2}^{2}$ $\mathbf{H}_{0}'': \boldsymbol{\sigma}_{1}^{2} \geq \boldsymbol{\sigma}_{2}^{2}$	$H_{1}': \sigma_{1}^{2} > \sigma_{2}^{2} \\ H_{1}'': \sigma_{1}^{2} < \sigma_{2}^{2}$		
$F = \frac{s_1^2 / \sigma_1^2}{s_2^2 / \sigma_2^2} -$		$\frac{2}{2}$ test statistic	
If H_0 is true, $F_0 = F$			
If F_0 takes its value in the table of F_0 takes its value in table of F_0 takes its value in ta	he $\left(F_{1-a/2},F_{a/2} ight)$ H	$\mathbf{H}_0: \boldsymbol{\sigma}_1^2 = \boldsymbol{\sigma}_2^2$	
	$\left(0,F_{\alpha}\right)$ H	$\mathbf{I}_0': \sigma_1^2 \leq \sigma_2^2$	
	$\left(F_{1-\alpha},\infty\right)$ H	$\mathbf{I}_0'': \sigma_1^2 \ge \sigma_2^2$	
	range, H_0 is accept	pted.	17

Example 12

(Box-Hunter-Hunter: Statistics for Experimenters, J. Wiley, 1978, p.97) The wear of two kinds of raw material (A and B) is compared as shoe soles on the foot of 10-10 boys.

Is the difference of means significant at α =0.05 level?

	п	mean	sample variance
Α	10	10.61	6.063
В	10	11.04	6.343

2	1	

PAIRED <i>t</i> -TEST	
$H_0: E(x_i) = E(y_i) \qquad H_1: E(x_i) \neq E(y_i)$ $H_0: E(d_i) = E(x_i) - E(y_i) = 0$	
$d_i = x_i - y_i$ one-sample <i>t</i> -test for the differences	
$\overline{d} = \frac{\sum_{i} d_{i}}{n} \qquad s_{d}^{2} = \frac{\sum_{i} (d_{i} - \overline{d})^{2}}{n - 1}$ $t_{0} = \frac{\overline{d}}{n - 1} \qquad v = n - 1$	
S_d/\sqrt{n}	22

Example 12

(Box-Hunter-Hunter: Statistics for Experimenters, J. Wiley, 1978, p.97) The wear of two kinds of raw material (A and B) is compared as shoe soles on the foot of 10-10 boys.

Is the difference of means significant at α =0.05 level?

	materials A and B	, boy's shoes example*	
boy	material A	material B	B – A difference <i>a</i>
1	13.2(L)	14.0(R)	0.8
2	8.2(L)	8.8(R)	0.6
3	10.9(R)	11.2(L)	0.3
4	14.3(L)	14.2(R)	-0.1
5	10.7(R)	11.8(L)	1.1
6	6.6(L)	6.4(R)	-0.2
7	9.5(L)	9.8(R)	0.3
8	10.8(L)	11.3(R)	0.5
9	8.8(R)	9.3(L)	0.5
10	13.3(L)	13.6(R)	0.3
		average difference	0.41

